Add like
Add dislike
Add to saved papers

Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase.

Irisin is a recently discovered myokine reported as protective protein released from exercising skeletal muscles. Although myokines were recently reported to possess the antioxidizing properties, the impact of irisin on the functions of macrophages with respect to its anti-inflammatory potential has not been fully elucidated. Here, we determined the ability of irisin to interact with reactive oxygen species (ROS) in RAW 264.7 murine macrophages. The macrophages were pre-incubated with irisin (0 - 50 nM), some of which had undergone additional co-incubation with bacterial lipopolysaccharide (LPS) (100 ng/ml). Cell viability, the reactive oxygen species scavenging potential as well as the mRNA and protein expression of key oxidative stress factors such as superoxide dismutase 1 (SOD-1), superoxide dismutase 2 (SOD-2), glutathione peroxidase (GSH-Px), catalase 9 (Cat-9), nuclear factor (erythroid-derived 2)-like 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) were evaluated. We found that irisin applied in a concentration of 50 nM significantly attenuated the production of harmful H2 O2 and this effect appears to be mediated by a significant increase in the expression of key enzymes involved with antioxidative stress pathways including SOD, GSH-Px and Cat-9 predominantly observed after stimulation of these cells with LPS. We conclude that 1) irisin exhibits a potent antioxidant and anti-inflammatory activities in non-stimulated and LPS-stimulated isolated murine macrophages in vitro, and 2) this protective and antioxidative activity of irisin in vitro might be considered as an important component of protective action of this peptide in vivo, especially under condition of exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app