Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ablation of Sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload.

Mitochondrial Sirtuin 5 (SIRT5) is an NAD+ -dependent demalonylase, desuccinylase, and deglutarylase that controls several metabolic pathways. A number of recent studies point to SIRT5 desuccinylase activity being important in maintaining cardiac function and metabolism under stress. Previously, we described a phenotype of increased mortality in whole-body SIRT5KO mice exposed to chronic pressure overload compared with their littermate WT controls. To determine whether the survival phenotype we reported was due to a cardiac-intrinsic or cardiac-extrinsic effect of SIRT5, we developed a tamoxifen-inducible, heart-specific SIRT5 knockout (SIRT5KO) mouse model. Using our new animal model, we discovered that postnatal cardiac ablation of Sirt5 resulted in persistent accumulation of protein succinylation up to 30 weeks after SIRT5 depletion. Succinyl proteomics revealed that succinylation increased on proteins of oxidative metabolism between 15 and 31 weeks after ablation. Heart-specific SIRT5KO mice were exposed to chronic pressure overload to induce cardiac hypertrophy. We found that, in contrast to whole-body SIRT5KO mice, there was no difference in survival between heart-specific SIRT5KO mice and their littermate controls. Overall, the data presented here suggest that survival of SIRT5KO mice may be dictated by a multitissue or prenatal effect of SIRT5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app