Add like
Add dislike
Add to saved papers

Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries.

A sulfur-Polyacrylonitrile (PAN)-acetylene black (AB) composite was synthesized via thermal treatment processes. The as-prepared ternary composite was characterized by expending transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and electrochemical investigations. The improved electrochemical performance can be attributed to the formation of PAN layer, which can keep a tight contact between carbon and sulfur which leads to improve the conductivity. Moreover, the PAN can also act as a flexible cushion to accommodate volume changes of sulfur cathode as well as a barrier to trap soluble polysulfide intermediates during the charge-discharge process. The PAN-S-AB composite exhibits discharge capacity of 620 mAh/g even after 50 cycles with appreciable sustainability. Therefore, the resulting PAN/S/AB composite exhibited as a desirable cathode material for Li-S battery with great performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app