Add like
Add dislike
Add to saved papers

NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe 2 O 3 Nanoarrays: An Efficient Hole Extraction p-n Heterojunction Photoanode for Water Oxidation.

ChemSusChem 2018 July 12
The photoelectrochemical (PEC) water-splitting efficiency of a hematite-based photoanode is still far from the theoretical value due to its poor surface reaction kinetics and high density of surface trapping states. To solve these drawbacks, a photoanode consisting of NiO nanoparticles anchored on a gradient phosphorus-doped α-Fe2 O3 nanorod (NR) array (NiO/P-α-Fe2 O3 ) was fabricated to achieve optimal light absorption and charge separation, as well as rapid surface reaction kinetics. Specifically, a photoanode with the NR array structure allowed a high mass-transport rate to be achieved, while phosphorus doping effectively decreased the number of surface trapping sites and improved the electrical conductivity of α-Fe2 O3 . Furthermore, the p-n junction that forms between NiO and P-α-Fe2 O3 can further improve the PEC performance due to efficient hole extraction and the water oxidization catalytic activity of NiO. Consequently, the NiO/P-α-Fe2 O3 NR photoanode produced a high photocurrent density of 2.08 mA cm-2 at 1.23 V versus a reversible hydrogen electrode and a 110 mV cathodic shift of the onset potential. This rational design of structure offers a new perspective in exploring high-performance PEC photoanodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app