Add like
Add dislike
Add to saved papers

Post-formation Copper-Nitrogen Species on Carbon Black: Their Chemical Structures and Active Sites for Oxygen Reduction Reaction.

The 3d transition metal and nitrogen co-doped carbon materials (TM-N-C) are considered as the most promising next-generation electrocatalysts, as alternatives to precious Pt, for the oxygen reduction reaction (ORR). Herein, we have fabricated a Cu-N-C catalyst through directly grafting copper-nitrogen complexes, composed by cuprous chloride and ammonia water, onto the surface of carbon black at 500 °C. In an alkaline environment, the synthesized catalyst exhibits excellent ORR catalytic activity, which is comparable to the state-of-the-art Pt/C catalyst, but far exceeding that obtained by the original carbon. Moreover, the catalyst displays much better stability than Pt/C. The enhanced ORR performance is proven to originate from the post-formation CuI -N2 and CuII -N4 sites at the carbon surface, as evidenced by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The possible ORR process catalyzed by these Cu-Nx species is discussed at the atomic level. This work provides a simple and fast synthesis strategy for efficient TM-N-C catalysts on a large scale for energy storage and conversion systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app