Add like
Add dislike
Add to saved papers

Effect of Nucleotide State on the Protofilament Conformation of Tubulin Octamers.

At the molecular level, the dynamic instability (random growth and shrinkage) of the microtubule (MT) is driven by the nucleotide state (GTP vs GDP) in the β subunit of the tubulin dimers at the MT cap. Here, we use large-scale molecular dynamics (MD) simulations and normal-mode analysis (NMA) to characterize the effect of a single GTP cap layer on tubulin octamers composed of two neighboring protofilaments (PFs). We utilize recently reported high-resolution structures of dynamic MTs to simulate a GDP octamer both with and without a single GTP cap layer. We perform multiple replicas of long-time atomistic MD simulations (3 replicas, 0.3 μs for each replica, 0.9 μs for each octamer system, and 1.8 μs total) of both octamers. We observe that a single GTP cap layer induces structural differences in neighboring PFs, finding that one PF possesses a gradual curvature, compared to the second PF which possesses a kinked conformation. This results in either curling or splaying between these PFs. We suggest that this is due to asymmetric strengths of longitudinal contacts between the two PFs. Furthermore, using NMA, we calculate mechanical properties of these octamer systems and find that octamer system with a single GTP cap layer possesses a lower flexural rigidity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app