Add like
Add dislike
Add to saved papers

Optical Activity of Semiconductor Gammadions beyond Planar Chirality.

We present rigorous analysis of optical activity of chiral semiconductor gammadions whose chirality in three dimensions is caused by the nonuniformity of thickness in the transverse plane. It is shown that such gammadions not only distinguish between the two circular polarizations upon scattering and reflection of light, like all two-dimensional semiconductor nanostructures with planar chirality do, but also exhibit circular dichroism and circularly polarized luminescence. Chiral semiconductor gammadions whose charge carriers are mostly confined to the arms are found to feature both high dissymmetry of optical response and a constant-sign circular dichroism signal over a wide frequency range. It is also shown that the strength of the gammadion's chiroptical response is determined solely by two geometric factors: the variation range of the gammadion's thickness and the arms' curvature. Our seminal theoretical study is intended to lay the foundation for future applications of semiconductor gammadions in chiral nanophotonics and nanotechnology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app