Add like
Add dislike
Add to saved papers

Theranostic Niosomes for Efficient siRNA/MicroRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells.

RNA interference-mediated gene regulation in stem cells offers great potential in regenerative medicine. In this study, we developed a theranostic platform for efficient delivery of small RNAs [small interfering RNA (siRNA)/microRNA (miRNA)] to human mesenchymal stem cells (hMSCs) to promote differentiation, and meanwhile, to specifically label the transfected cells for the in vivo tracking purpose. We encapsulated indocyanine green (ICG) in a nonionic surfactant vesicle, termed "niosome", that is mainly composed of a nonionic surfactant sorbitan monooleate (Span 80) and a cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). This novel ICG-containing niosome system (iSPN) demonstrated highly efficient siRNA and miRNA delivery in hMSCs. Specific inhibition of miR-138, a negative regulator of osteoblast differentiation, was achieved by iSPN/miR-138, which significantly promoted osteogenesis of hMSCs. Furthermore, iSPN exhibited OFF/ON activatable fluorescence upon cellular internalization, resulting in efficient near-infrared labeling and the capability to dynamically monitor stem cells in mice. In addition, iSPN/siRNA achieved simultaneous long-term cell tracking and in vivo gene silencing after implantation in mice. These results indicate that our theranostic niosomes could represent a promising platform for future development of stem cell-based therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app