Add like
Add dislike
Add to saved papers

Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution.

Graphdiyne (GDY), a novel two-dimensional full-carbon material, has attracted lots of attention because of its high conjugated system comprising sp2 and sp-hybridized carbons. The distinctive structure characteristics endow it unique electronic structure, uniform distributed pores and excellent chemical stability. A novel GDY-supported NiFe layered double hydroxide (LDH) composite was successfully prepared for the first time. By taking advantage of the increased surface active areas and improved conductivity, the designed hierarchical GDY@NiFe composite exhibits outstanding catalytic activity that only required a small overpotential about 260 mV to achieve the current density of 10 mA cm-2 . The nanocomposite shows excellent durability in alkaline medium implying a superior OER electrocatalytic activity. It is anticipated that the as-prepared GDY@NiFe composite electrocatalyst provide new insights in designing graphdiyne-supported electrocatalyst materials for oxygen evolution application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app