Add like
Add dislike
Add to saved papers

Amyloid causes intermittent network disruptions in cognitively intact older subjects.

Recent findings in AD models but also human patients suggest that amyloid can cause intermittent neuronal hyperactivity. The overall goal of this study was to use dynamic fMRI analysis combined with graph analysis to a) characterize the graph analytical signature of two types of intermittent hyperactivity (spike-like (spike) and hypersynchronus-like (synchron)) in simulated data and b) to attempt to identify one of these signatures in task-free fMRIs of cognitively intact subjects (CN) with or without increased brain amyloid. The toolbox simtb was used to generate 33 data sets with 2 short spike events, 33 with 2 synchron and 33 baseline data sets. A combination of sliding windows, hierarchical cluster analysis and graph analysis was used to characterize the spike and the synchron signature. Florbetapir-F18 PET and task-free 3 T fMRI was acquired in 49 CN (age = 70.7 ± 6.4). Processing the real data with the same approach as the simulated data identified phases whose graph analytical signature resembled that of the synchron signature in the simulated data. The duration of these phases was positively correlated with amyloid load (r = 0.42, p < 0.05) and negatively with memory performance (r = -0.43, p < 0.05). In conclusion, amyloid positivity is associated with intermittent hyperactivity that is caused by short phases of hypersynchronous activity. The negative association with memory performance suggests that these disturbances have the potential to interfere with cognitive processes and could lead to cognitive impairment if they become more frequent or more severe with increasing amyloid deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app