Add like
Add dislike
Add to saved papers

Salient aspects of PBP2A-inhibition; A QSAR Study.

Backgound: Inhibition of penicillin binding protein 2A (PBP2A) represents a sound drug design strategy in combatting Methicillin resistant Staphylococcus aureus (MRSA). Considering the urgent need for effective antimicrobials in combatting MRSA infections, we have developed a statistically robust ensemble of molecular descriptors (1, 2, & 3-D) from compounds targeting PBP2A in vivo.

METHODS: 37 (training set: 26, test set: 11) PBP2A-inhibitors were submitted for descriptor generation after which an unsupervised, non-exhaustive genetic algorithm (GA) was deployed for fishing out the best descriptor subset. Assignment of descriptors to a regression model was accomplished with the Partial Least Square (PLS) algorithm. At the end, an ensemble of 30 descriptors accurately predicted the ligand bioactivity, IC50 (R = 0.9996, R2 = 0.9992, R2a = 0.9949, SEE =, 0.2297 Q2LOO = 0.9741).

RESULTS & DISCUSSION: Inferentially, we noticed that the overall efficacy of this model greatly depends on atomic polarizability and negative charge (electron) density. Besides the formula derived, the high dimensional model also offers critical insights into salient cheminformatics parameter to note during hit-to-lead PBP2A-antagonist optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app