Add like
Add dislike
Add to saved papers

Effect of β-D-mannuronic acid (M2000) on oxidative stress enzymes' gene using healthy donor peripheral blood mononuclear cells for evaluating the anti-aging property.

OBJECTIVE: This research aimed to study the anti-aging and anti-inflammatory effects of low and high doses of the β-D-mannuronic (M2000) on gene expression of enzymes involved in oxidative stress (including SOD2, GST, GPX1, CAT, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy donors under in vitro conditions.

METHODS: The PBMCs were separated and the RNAs were then extracted and the cDNAs synthesized, and expression levels of the mentioned genes were detected by qRT-PCR.

RESULTS: Our results indicated that the high dose of this drug could significantly reduce the expression level of the SOD2 gene compared to the lipopolysaccharide (LPS) group (p < 0.0001). Moreover, it was found that the high dose of this drug could significantly decrease the expression level of the GST gene compared to the LPS group (p < 0.0001). However, no significant reductions were observed in expression levels of the CAT and GPX1 genes compared to the LPS group. Furthermore, our data revealed that the level of iNOS and MPO gene expression was significantly reduced, in both doses of M2000, respectively, compared to the LPS group (p < 0.0001).

CONCLUSION: This research showed that M2000 as a novel NSAID with immunosuppressive properties could modify oxidative stress through lowering expression levels of the SOD2, GST, iNOS, and MPO genes compared to the healthy expression levels, with a probable reduction of the risk of developing inflammatory diseases related to age and aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app