Add like
Add dislike
Add to saved papers

Antimalarial activity and metabolism of dihydroartemisinin-derived dimer.

The dihydroartemisinin-derived dimer (DHA dimer) was synthesized, and its antimalarial activities were evaluated both in vitro and in vivo. The dimer IC50 value of 0.51 ± 0.12 nM in vitro was significantly lower than that of DHA at 1.81 ± 0.70 nM. The dimer ED50 values were 0.44 ± 0.03 and 0.18 ± 0.03 mg/(kg·day) in vivo for intragastric (i.g.) and intravenous (i.v.) groups, respectively, to Plasmodium yoelii rodent malaria. It also performed better relative to those of DHA which had ED50 values of 0.76 ± 0.03 mg/(kg·day) (i.g.) and 0.32 ± 0.03 mg/(kg·day) (i.v.). Moreover, the recrudescence rate, negative conversion rate, and cure rate of the dimer showed superior performance. Furthermore, the metabolites and major metabolic pathways of the dimer in rats were preliminarily investigated using the HPLC-HRMSn method. Twenty-seven metabolites, including DHA, 11 metabolites of DHA, and 15 other novel metabolites, were detected in rats after i.g. administration of dimer. The metabolic pathways of the 15 novel metabolites were inferred: deoxygenation, hydroxylation, and hydroxylation with dehydration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app