Add like
Add dislike
Add to saved papers

A Feasible Method of Angiogenesis Assessment in Gastric Cancer Using 3D Microvessel Density.

Background: Cancer stem cell (CSC) promotes angiogenesis which plays an important role in tumor occurrence, growth, and metastasis. Accurately, quantifying the tumor vasculature can help understanding CSC characteristics and improve cancer diagnosis, therapy planning, and evaluation. The objective of this study is to present a method for improved angiogenesis assessment.

Methods: We proposed a three-dimensional microvessel density (3D MVD) to evaluate tumor angiogenesis and tested it in animal models. Six male Balb/c nude mice were divided into normal group and tumor group. The mice in tumor group were orthotopically implanted human gastric cancer, cell line BGC-823. The phase-contrast images were collected at Shanghai Synchrotron Radiation Facility BL13W beamline, which has much higher soft-tissue contrast and spatial resolution than conventional X-ray. After volume reconstruction and vessel extraction, the 3D models of the angiogenesis were established for MVD calculation.

Results: The results showed that the proposed 3D MVD is positively correlated with the pathological changes of the microvessels. It took the advantage of high resolution of the phase-contrast imaging and added three-dimensional information to the existing MVD measure.

Conclusions: Our study presents a feasible approach for better understanding of tumor angiogenesis. It may provide doctors and scientists a better tool for cancer investigation and improving medical outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app