Add like
Add dislike
Add to saved papers

Human Urine-Derived Stem Cells: Potential for Cell-Based Therapy of Cartilage Defects.

Stem cell therapy is considered an optimistic approach to replace current treatments for cartilage defects. Recently, human urine-derived stem cells (hUSCs), which are isolated from the urine, are studied as a promising candidate for many tissue engineering therapies due to their multipotency and sufficient proliferation activities. However, it has not yet been reported whether hUSCs can be employed in cartilage defects. In this study, we revealed that induced hUSCs expressed chondrogenic-related proteins, including aggrecan and collagen II, and their gene expression levels were upregulated in vitro . Moreover, we combined hUSCs with hyaluronic acid (HA) and injected hUSCs-HA into a rabbit knee joint with cartilage defect. Twelve weeks after the injection, the histologic analyses (HE, toluidine blue, and Masson trichrome staining), immunohistochemistry (aggrecan and collagen II), and histologic grade of the sample indicated that hUSCs-HA could stimulate much more neocartilage formation compared with hUSCs alone, pure HA, and saline, which only induced the modest cartilage regeneration. In this study, we demonstrated that hUSCs could be a potential cell source for stem cell therapies to treat cartilage-related defects in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app