Add like
Add dislike
Add to saved papers

The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo 2 O 4 rods synthesized by oxalate co-precipitation method.

Scientific Reports 2018 May 16
Mesoporous ZnCo2 O4 rods have been successfully prepared via oxalate co-precipitation method without any template. The nano-sized spinel crystallites connected together to form mesoporous structure by annealing homogeneous complex oxalates precursor at a low rate of heating. It is found that the low anneal rate plays an important role for the formation of mesoporous ZnCo2 O4 rods. The effects of the heat temperature on the phase, morphology and catalytic properties of the products were studied. The XRD, SEM TEM, and N2 absorption/desorption have been done to obtain compositional and morphological information as well as BET surface area of the as-prepared sample. Catalytic activities of mesoporous ZnCo2 O4 rods toward the thermal decomposition of ammonium perchlorate (AP) were investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques. The results show that the addition of ZnCo2 O4 rods to AP dramatically reduces the decomposition temperature. The ZnCo2 O4 rods annealed at 250 °C possesses much larger specific area and exhibits excellent catalytic activity (decrease the high decomposition temperature of AP by 162.2 °C). The obtained mesoporous ZnCo2 O4 rods are promising as excellent catalyst for the thermal decomposition of AP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app