Add like
Add dislike
Add to saved papers

Combined HDAC and Bromodomain Protein Inhibition Reprograms Tumor Cell Metabolism and Elicits Synthetic Lethality in Glioblastoma.

Purpose: Glioblastoma remains a challenge in oncology, in part due to tumor heterogeneity. Experimental Design: Patient-derived xenograft and stem-like glioblastoma cells were used as the primary model systems. Results: Based on a transcriptome and subsequent gene set enrichment analysis (GSEA), we show by using clinically validated compounds that the combination of histone deacetylase (HDAC) inhibition and bromodomain protein (BRD) inhibition results in pronounced synergistic reduction in cellular viability in patient-derived xenograft and stem-like glioblastoma cells. Transcriptome-based GSEA analysis suggests that metabolic reprogramming is involved with synergistic reduction of oxidative and glycolytic pathways in the combination treatment. Extracellular flux analysis confirms that combined HDAC inhibition and BRD inhibition blunts oxidative and glycolytic metabolism of cancer cells, leading to a depletion of intracellular ATP production and total ATP levels. In turn, energy deprivation drives an integrated stress response, originating from the endoplasmic reticulum. This results in an increase in proapoptotic Noxa. Aside from Noxa, we encounter a compensatory increase of antiapoptotic Mcl-1 protein. Pharmacologic, utilizing the FDA-approved drug sorafenib, and genetic inhibition of Mcl-1 enhanced the effects of the combination therapy. Finally, we show in orthotopic patient-derived xenografts of GBM, that the combination treatment reduces tumor growth, and that triple therapy involving the clinically validated compounds panobinostat, OTX015, and sorafenib further enhances these effects, culminating in a significant regression of tumors in vivo Conclusions: Overall, these results warrant clinical testing of this novel, efficacious combination therapy. Clin Cancer Res; 24(16); 3941-54. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app