Add like
Add dislike
Add to saved papers

Hydroxylase Activity of ASPH Promotes Hepatocellular Carcinoma Metastasis Through Epithelial-to-Mesenchymal Transition Pathway.

EBioMedicine 2018 May
Over-expression of aspartyl (asparagynal)-β-hydroxylase (ASPH) contributes to hepatocellular carcinoma (HCC) invasiveness, but the role of ASPH hydroxylase activity in this process remains to be defined. As such, the current study investigated the role of ASPH hydroxylase activity in downstream signalling of HCC tumorgenesis and, specifically, metastasis development. Over-expression of wild-type ASPH, but not a hydroxylase mutant, promoted HCC cell migration in vitro, as well as intrahepatic and distant metastases in vivo. The enhanced migration and epithelial to mesenchymal transition (EMT) activation was notably absent in response to hydroxylase activity blockade. Vimentin, a regulator of EMT, interacted with ASPH and likely mediated the effect of ASPH hydroxylase activity with cell migration. The enhanced hydroxylase activity in tumor tissues predicted worse prognoses of HCC patients. Collectively, the hydroxylase activity of ASPH affected HCC metastasis through interacting with vimentin and regulating EMT. As such, ASPH might be a promising therapeutic target of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app