Add like
Add dislike
Add to saved papers

Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol.

Bioresource Technology 2018 September
This study investigated the effects of electrolytes (CaCl2 , K2 HPO4 , MgSO4 , NaCl, and NH4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (kL a) increased up to 414% compared to the control. Saturated CO (C∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (Rmax ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO4 medium predicted a higher ethanol production compared to the control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app