Journal Article
Review
Add like
Add dislike
Add to saved papers

The electrochemical regeneration of granular activated carbons: A review.

The electrochemical treatment of exhausted granular activated carbon (GAC) has been identified as an effective alternative to traditional adsorbent regeneration methods (e.g. thermal, chemical, and microbial). However, despite its proven potential and initial investigation over two decades ago, the development of this technology has been progressing slowly, hindering its deployment in industrial applications. Thus, a review has been conducted that aims to present the fundamentals of GAC electrochemical regenerative methods, what research has been conducted to develop the technology to the present day, and lastly, identify limitations and future prospects associated with electrochemical methods. The regenerative mechanism is firstly discussed, followed by a presentation of the varying reactor configurations and operating parameters utilized during the electrochemical treatment of GAC materials exhausted with a broad range of wastewater contaminants. Finally, emerging electrochemical technologies used for the commercial treatment of exhausted adsorbent materials and contaminated soils are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app