Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2 + 2 + 1] Pyrrole Synthesis from Alkynes and Azobenzene.

A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally TiII /TiIV redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion. Computations support this kinetic analysis, provide insights into the structure of the active species in catalysis and the roles of solvent, and provide a new mechanism for regeneration of the Ti imido catalyst via disproportionation. Reductive elimination from a 6-membered azatitanacyclohexadiene species to generate pyrrole-bound TiII is surprisingly facile and occurs through a unique electrocyclic reductive elimination pathway similar to a Nazarov cyclization. The resulting TiII species are stabilized through backbonding into the π* of the pyrrole framework, although solvent effects also significantly stabilize free TiII species that are required for pyrrole loss and catalytic turnover. Further computational and kinetic analysis reveals that in complex reactions with unysmmetric alkynes the resulting pyrrole regioselectivity is driven primarily by steric effects for terminal alkynes and inductive effects for internal alkynes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app