Add like
Add dislike
Add to saved papers

Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink.

Electrohydrodynamic printing (EHDP) has attracted extensive interests as a powerful technology to fabricate micro- to nano-scale fibrous scaffolds in a custom-tailored manner for biomedical applications. A few synthetic biopolymer inks are applicable to this EHDP technology, but the fabricated scaffolds suffered from low mechanical strength, biocompatibility, and biodegradability. In this study, a series of poly(ε-caprolactone) (PCL)/zein composite inks were developed and their printability was examined on a solution-based EHDP system for scaffold fabrication. Multilayer grid scaffolds were manufactured by PCL, PCL/zein-10, and PCL/zein-20 inks, respectively and characterized. The mechanical strength of scaffolds printed by PCL/zein composite inks was remarkably enhanced in terms of Young's modulus and yield stress. The enzyme-accelerated in vitro degradation study demonstrated that zein-containing scaffolds exhibited dose-responsive improvement on the degradation rate as evidenced by surface morphological change of fibers. Moreover, the biocompatibility of PCL/zein scaffolds, tested on mice embryonic fibroblast (NIH/3T3) and human nonsmall lung cancer cell (H1299), manifested better cell affinity. Our findings suggest that scaffolds fabricated by the solution-based EHDP with PCL/zein composite inks can significantly improve Young's modulus, yield stress, biocompatibility, and biodegradability and have potential applications in drug delivery systems, 3D cell culture modeling, or tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app