Add like
Add dislike
Add to saved papers

Stability, Elastic Properties, and Deformation of LiBN 2 : A Potential High-Energy Material.

Searching for high-energy-density materials is of great interest in scientific research and for industrial applications. Using an unbiased structure prediction method and first-principles calculations, we investigated the phase stability of LiBN2 from 0 to100 GPa. Two new structures with space groups P4̅21 m and Pnma were discovered. The theoretical calculations revealed that Pnma LiBN2 is stable with respect to a mixture of 1 /3 Li3 N, BN, and 1 /3 N2 above 22 GPa. The electronic band structure revealed that Pnma LiBN2 has an indirect band gap of 2.3 eV, which shows a nonmetallic feature. The Pnma phase has a high calculated bulk modulus and shear modulus, indicating its incompressible nature. The microscopic mechanism of the structural deformation was demonstrated by ideal tensile shear strength calculations. It is worth mentioning that Pnma LiBN2 is dynamically stable under ambient conditions. The decomposition of this phase is exothermic, releasing an energy of approximately 1.23 kJ/g at the PBE level. The results provide new thoughts for designing and synthesizing novel high-energy compounds in ternary systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app