Add like
Add dislike
Add to saved papers

MicroRNA-520a-3p inhibits cell growth and metastasis of non-small cell lung cancer through PI3K/AKT/mTOR signaling pathway.

OBJECTIVE: MicroRNAs are a class of small non-coding RNAs that be involved in the pathogenesis of non-small cell lung cancer (NSCLC). The purpose of this study was to evaluate the effects of miR-520a-3p in cell growth and metastasis.

MATERIALS AND METHODS: The mimics and inhibitor of miR-520a-3p were used to identify the effects of miR-520a-3p on cell proliferation and apoptosis using methylthiazol tetrazolium (MTT) assay and flow-cytometric method, respectively. Transwell assay was used to evaluate the cell migration and invasion. The protein expression levels related PI3K/AKT/mTOR signaling pathways were measured by Western blot.

RESULTS: The results showed that miR-520a-3p overexpression could significantly inhibit cell proliferation and induce apoptosis, suppress cell migration and invasion. MiR-520a-3p overexpression could markedly reduce the ratio of p-AKT/AKT, p-PI3K/PI3K and Bcl-2/Bax, the levels of mTOR, matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) compared with control. However, miR-520a-3p overexpression could increase caspase-3 expression compared with control group. After inhibited the expression of miR-520a-3p, the capacity of cell proliferation, migration and invasion were increased, cell apoptosis was inhibited compared with control group. The ratio of p-AKT/AKT, p-PI3K/PI3K and Bcl-2/Bax, the levels of mTOR, MMP-2 and MMP-9 were increased compared with control group.

CONCLUSIONS: Our study suggested that miR-520a-3p could suppress the NSCLC proliferation, migration and invasion through PI3K/AKT/mTOR signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app