Add like
Add dislike
Add to saved papers

Prevention of prostate cancer by natural product MDM2 inhibitor GS25: In vitro and in vivo activities and molecular mechanisms.

Carcinogenesis 2018 May 13
Prostate cancer remains a major health problem in the US and worldwide. There is an urgent need to develop novel approaches to preventing primary and metastatic prostate cancer. We have identified 25-OCH3-protopanaxadiol (GS25), the most active ginsenoside that has been identified so far; it has potent activity against human cancers, including prostate cancer. However, it has not been proven if GS25 could be a safe and effective agent for cancer prevention. In the present study, we used the TRAMP model and clearly demonstrated that GS25 inhibited prostate tumorigenesis and metastasis with minimal host toxicity. Mechanistically, GS25 directly bound to the RING domain of MDM2, disrupted MDM2-MDMX binding, and induced MDM2 protein degradation, resulting in strong inhibition of prostate cancer cell growth and metastasis, independent of p53 and androgen receptor status. In conclusion, our in vitro and in vivo data support the potential use of GS25 in prevention of primary and metastatic prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app