Add like
Add dislike
Add to saved papers

Simple, Low-Cost Fabrication of Highly Uniform and Reproducible SERS Substrates Composed of Ag⁻Pt Nanoparticles.

Nanomaterials 2018 May 16
Ag⁻Pt nanoparticles, grafted on Ge wafer, were synthesized by the galvanic replacement reaction based on their different potentials. Detailed characterization through scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray photo-elelctron spectroscopy (XPS) proved that Ag⁻Pt nanoparticles are composed of large Ag nanoparticles and many small Pt nanoparticles instead of an Ag⁻Pt alloy. When applied as surface-enhanced Raman scattering (SERS) substrates to detect Rhodamine 6G (1 × 10-8 M) or Crystal violet (1 × 10-7 M) aqueous solution in the line mapping mode, all of the obtained relative standard deviation (RSD) values of the major characteristic peak intensities, calculated from the SERS spectra of 100 serial spots, were less than 10%. The fabrication process of the SERS substrate has excellent uniformity and reproducibility and is simple, low-cost and time-saving, which will benefit studies on the platinum-catalyzed reaction mechanisms in situ and widen the practical application of SERS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app