Add like
Add dislike
Add to saved papers

Density anomaly of water at negative pressures from first principles.

Using molecular dynamics simulations based on ab initio trained high-dimensional neural network potentials, we study the equation of state of liquid water at negative pressures. From density isobars computed for various pressures down to p  =  -230 MPa we determine the line of density maxima for two potentials based on the BLYP and the RPBE functionals, respectively. In both cases, dispersion corrections are included to account for non-local long-range correlations that give rise to van der Waals forces. We have followed the density maximum down to negative pressures close to the spinodal instability. For both functionals, the temperature of maximum density increases with decreasing pressure under moderate stretching, but changes slope at [Formula: see text] MPa and [Formula: see text] MPa for BLYP and RPBE, respectively. Our calculations confirm qualitatively the retracing shape of the line of density maxima found for empirical water models, indicating that the spinodal line maintains a positive slope even at strongly negative pressures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app