Add like
Add dislike
Add to saved papers

Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons.

We study the electron transport properties through the junction of a benzene molecule in conjunction with two monolayer zigzag-edged phosphorene nanoribbon (ZPNR) electrodes by applying the nonequilibrium Green's functions in combination with the density functional theory. We find that the molecular junction with two phosphorus-carbon bonds exhibits an interesting low-bias negative differential resistance effect with a peak-to-valley ratio of 29, which originates from the edge states in ZPNR due to the anisotropic band structure of phosphorene. Importantly, the performance of the junction can be tuned via the molecule-ZPNR interface bonding. The findings may be useful in sensitive-device applications. Furthermore, the physical mechanisms are revealed and discussed in terms of the electronic transmission spectrum, the evolution of the frontier molecular orbitals, the local device density of states around the Fermi level, and the projected density of states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app