Add like
Add dislike
Add to saved papers

Selective and Sensitive Pull Down of Amyloid Fibrils Produced in Vitro and in Vivo by the Use of Pentameric-Thiophene-Coupled Resins.

Protein aggregation is a hallmark of several degenerative diseases, including Alzheimer's disease, Parkinson's disease and familial amyloidosis (Finnish type) (FAF). A method to isolate and detect amyloids is desired for the diagnosis of amyloid diseases. Here, we report the synthesis of pentameric thiophene amyloid ligand (p-FTAA) linked to agarose resin for selective purification of amyloid aggregates produced in vitro and in vivo. Using amyloid fibrils produced in vitro from α-synuclein, gelsolin, and Aβ1-40 and gelsolin amyloid aggregates extracted from tissue homogenates of a mouse model of FAF, we observed that p-FTAA resin was able to pull down amyloid aggregates. The functionalized resin was also able to pull down oligomers produced in vitro from the A30P variant of α-synuclein. The methodology described here can be useful for the diagnosis of amyloidogenic disease and also can be used to purify amyloid fibrils from biological samples, rendering the fibrils available for more accurate structural and biochemical characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app