Add like
Add dislike
Add to saved papers

FM19G11 inhibits O 6 -methylguanine DNA-methyltransferase expression under both hypoxic and normoxic conditions.

Cancer Medicine 2018 May 16
FM19G11 is a small molecular agent that inhibits hypoxia-inducible factor-1-alpha (HIF-1α) and other signaling pathways. In this study, we characterized the modulating effects of FM19G11 on O6 -methylguanine DNA-methyltransferase (MGMT), the main regulator of temozolomide (TMZ) resistance in glioblastomas. This study included 2 MGMT-positive cell lines (GBM-XD and T98G). MGMT promoter methylation status, mRNA abundance, and protein levels were determined before and after FM19G11 treatment, and the roles of various signaling pathways were characterized. Under hypoxic conditions, MGMT mRNA and protein levels were significantly downregulated by FM19G11 via the HIF-1α pathway in both GBM-XD and T98G cells. In normoxic culture, T98G cells were strongly positive for MGMT, and MGMT expression was substantially downregulated by FM19G11 via the NF-κB pathway. In addition, TMZ resistance was reversed by treatment with FM19G11. Meanwhile, FM19G11 has no cytotoxicity at its effective dose. FM19G11 could potentially be used to counteract TMZ resistance in MGMT-positive glioblastomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app