Add like
Add dislike
Add to saved papers

Unexpected regulation pattern of the IKKβ/NF-κB/MuRF1 pathway with remarkable muscle plasticity in the Daurian ground squirrel (Spermophilus dauricus).

As a typical hibernator, the Daurian ground squirrel (Spermophilus dauricus) spends considerable time in a state of reduced activity with prolonged fasting. Despite this, they experience little muscle atrophy and have thus become an interesting anti-disuse muscle atrophy model. The IKKβ/NF-κB signaling pathway is significant to muscle atrophy due to the protein degradation resulting from the upregulation of the E3 ubiquitin ligase MuRF1. The current study showed that the IKKβ/NF-κB signaling pathway and MuRF1 maintained relatively steady mRNA and protein expression levels, with little muscle atrophy observed in the soleus (slow-twitch, SOL) or extensor digitorum longus (fast-twitch, EDL) during hibernation (HIB); however, mRNA expression significantly increased in the SOL and EDL muscle during interbout arousal (IBA), as did the MuRF1 mRNA level in the SOL and MuRF1 protein level in the EDL. Interestingly, the expressions of p50 and MuRF1 significantly increased during HIB in the gastrocnemius (mixed muscle, GAS) and showed moderate atrophy, but dramatically decreased during IBA. Elevated IKKβ and p50 mRNA and protein expression in the cardiac muscle (CM) during HIB did not accompany increased MuRF1 expression or muscle wasting. Importantly, almost all increased or decreased indicators in the tested tissues recovered to pre-hibernation levels after HIB. This is the first study to report on the unexpected regulation of the IKKβ/NF-κB/MuRF1 pathway with remarkable muscle plasticity in Daurian ground squirrels during hibernation. Furthermore, we found that different types of muscles exhibited different strategies to cope with prolonged hibernation-induced disuse muscle atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app