Add like
Add dislike
Add to saved papers

Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe 3 O 4 Nanocomposite-Based Supercapacitors: Turning Wastes into Value-Added Materials.

ChemSusChem 2018 July 21
The synthesis of porous activated carbon (specific surface area=1883 m2  g-1 ), Fe3 O4 nanoparticles, and carbon-Fe3 O4 (C-Fe3 O4 ) nanocomposites from local waste thermocol sheets and rusted iron wires is demonstrated herein. The resulting carbon, Fe3 O4 nanoparticles, and C-Fe3 O4 composites are used as electrode materials for supercapacitor applications. In particular, C-Fe3 O4 composite electrodes exhibit a high specific capacitance of 1375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % capacitance retention over 10 000 cycles. Subsequently, an asymmetric supercapacitor, namely, C-Fe3 O4 ∥Ni(OH)2 /carbon nanotube device, exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, with 98 % capacitance retention over 10 000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors, but also for the recycling of waste thermocol sheets and rusted iron wires for value-added reuse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app