Add like
Add dislike
Add to saved papers

Tuning thin-film bijels with applied external electric fields.

Soft Matter 2018 May 31
The tunability of thin-film bijels using applied external electric fields is explored using a Cahn-Hilliard Langevin dynamics computational model. Dielectric contrast between liquid domains governs liquid domain alignment and was varied in the simulations. Dielectric contrast between colloidal particles and liquid matrix induces dipolar particle interactions and was also varied in the simulations. The study reveals unique internal morphologies including those with through-thickness liquid domains. Significant results include identification of electric field effects on phase evolution and final morphology as well as relevant mechanisms. It was also found that particle chains act as nucleation sites for phase separation. The resultant morphologies were analyzed in terms of particle attachment to phase interface regions as well as the average channel diameter. Electric field effects and mechanisms on morphology are identified and compared with other morphology-tuning parameters such as particle loading and liquid-liquid composition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app