Add like
Add dislike
Add to saved papers

Genomic Heterogeneity and the Small Renal Mass.

Clinical Cancer Research 2018 September 2
Purpose: Tumor heterogeneity may represent a barrier to preoperative genomic characterization by needle biopsy in clear cell renal cell carcinoma (ccRCC). The extent of heterogeneity in small renal tumors remains unknown. Therefore, we set out to evaluate heterogeneity in resected large and small renal tumors. Experimental Design: We conducted a study from 2013 to 2016 that evaluated 47 consecutive ccRCC tumors resected during radical or partial nephrectomy. Cases were designated as small (<4 cm) and large (>7 cm) tumors. Each tumor had three regions sampled. Copy-number variation (CNV) was assessed and gene expression analysis was performed to characterize the clear-cell A and B (ccA/ccB) profile and the cell-cycle progression (CCP) score. Genomic heterogeneity between three regions was evaluated using CNV subclonal events, regional expression profiles, and correlation between gene expression. Results: Twenty-three small and 24 large tumors were analyzed. Total CNVs and subclonal CNVs events were less frequent in small tumors ( P < 0.001). Significant gene expression heterogeneity was observed for both CCP scores and ccA/ccB classifications. Larger tumors had more variance in CCP scores ( P = 0.026). The distribution of ccA/ccB differed between small and large tumors with mixed ccA/ccB tumors occurring more frequently in the larger tumors ( P = 0.024). Analysis of five mixed tumors (with both ccA/ccB regions) demonstrated the more aggressive ccB phenotype had greater CNV events ( P = 0.014). Conclusions: Small renal tumors have much less genomic complexity and fewer subclonal events. Pretreatment genomic characterization with single-needle biopsy in small tumors may be useful to assess biologic potential and may influence therapy. Clin Cancer Res; 24(17); 4137-44. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app