Add like
Add dislike
Add to saved papers

Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey.

Talanta 2018 August 2
It is difficult to detect tetracycline (TC) in honey sample by using carbon dots (CDs) because the autofluorescence of the matrix of honey sample overlaps with the fluorescence emission spectrum of the large majority of CDs. Herein, single-hole hollow molecularly imprinted polymers embedded carbon dots (HMIP@CD) was prepared via microwave-assisted method. TC in diluted honey sample was adsorbed by the HMIP@CD within 3 min, after which the HMIP@CD absorbed with TC was separated by centrifugation from honey sample and redispersed into phosphate buffer solution. The autofluorescence of honey that interferes with the fluorescence signal of HMIP@CD was avoided. The method exhibited an excellent linearity within 10-200 μg L-1 and a low detection limit of 3.1 μg L-1 . At three spiking levels of TC, the recoveries ranged from 93% to 105% with precisions below 1.6%. This method provides an effective strategy for detecting analyte in complex matrix with autofluorescence interference.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app