Add like
Add dislike
Add to saved papers

Ion mobility spectrometer with orthogonal X-Ray source for increased sensitivity.

Talanta 2018 August 2
Ion mobility spectrometers (IMS) are compact devices for extremely sensitive detection of proton and electron affine volatile compounds down to low pptv concentrations within less than a second. The measuring principle requires ionization of the target analyte. Most IMS employ radioactive electron sources, such as 63 Ni or 3 H. These radioactive materials suffer from legal restrictions limiting the fields of application. Furthermore, the electron emission has a predetermined intensity and cannot be controlled or disabled. In a previous work, we replaced the axially mounted 3 H source of our ion mobility spectrometer with a commercially available X-ray source operated at low acceleration voltage of 4.5 kV to be applicable in most application without legal restrictions. However, the high penetration depth of the radiation together with the statistical behavior of the X-ray ionization process led to an increase of Fano noise and thus a limited signal-to-noise ratio. Therefore, the X-ray source is now mounted orthogonal to the drift tube in order to avoid Fano noise. Here, we compare the analytical performance of this orthogonal setup with the axially mounted X-ray source. The noise level is significantly reduced. This improves the signal-to-noise ratio from 700 with the axially placed source to more than 3000 with the orthogonally placed source, while the resolving power still remains at R = 100. Furthermore, typical limits of detection for some model substances in the low pptv range in positive and negative ion mode are given.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app