Add like
Add dislike
Add to saved papers

Inhibition of Methylglyoxal-Induced Histone H1 N ε -Carboxymethyllysine Formation by (+)-Catechin.

Reactive dicarbonyl species (RCS) such as methylglyoxal (MGO) and glyoxal (GO) are common intermediates in protein damage, leading to the formation of advanced glycation end products (AGEs) through nonenzymatic glycation. (+)-Catechin, a natural plant extract from tea, has been evaluated for its ability in trapping GO and MGO. However, (+)-catechin is also reported to have both antioxidant ability and pro-oxidant properties. Until now, whether (+)-catechin can inhibit the formation of nonenzymatic glycation and the mechanism of the inhibition in nucleoprotein nonenzymatic glycation is still unclear. In the present study, histone H1 and MGO were used to establish an in vitro (100 mM phosphate buffer solution (PBS), pH 7.4, 37 °C) protein glycation model to study the trapping ability of (+)-catechin. Our data show that MGO caused dose-dependent protein damage, and the content of MGO-induced Schiff base formation was inhibited by (+)-catechin when the molecular ratio of catechin:MGO was 1:6. The formation of Nε -carboxymethyllysine (CML) was reduced significantly when the ratio of (+)-catechin and MGO was 1:1, which was similar to the inhibition effect of aminoguanidine (AG). The formation of CML under in vitro conditions can be inhibited by low concentration (12.5-100 μM) of (+)-catechin but not with high concentration (200-800 μM) of (+)-catechin. The reason is that the high concentration of (+)-catechin did not inhibit CML formations due to H2 O2 produced by (+)-catechin. In the presence of catalase, catechin can inhibit MGO-induced CML formation. In conclusion, the trapping ability of (+)-catechin may be more effective at the early stage of nonenzymatic glycation. However, a high concentration (200-800 μM) of (+)-catechin may not inhibit the formation of CML because it induced the increase of H2 O2 formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app