Add like
Add dislike
Add to saved papers

Probing the transcriptome of Aconitum carmichaelii reveals the candidate genes associated with the biosynthesis of the toxic aconitine-type C 19 -diterpenoid alkaloids.

Phytochemistry 2018 August
Aconitum carmichaelii has long been used as a traditional Chinese medicine, and its processed lateral roots are known commonly as fuzi. Aconitine-type C19 -diterpenoid alkaloids accumulating in the lateral roots are some of the main toxicants of this species, yet their biosynthesis remains largely unresolved. As a first step towards understanding the biosynthesis of aconitine-type C19 -diterpenoid alkaloids, we performed de novo transcriptome assembly and analysis of rootstocks and leaf tissues of Aconitum carmichaelii by next-generation sequencing. A total of 525 unigene candidates were identified as involved in the formation of C19 -diterpenoid alkaloids, including those encoding enzymes in the early steps of diterpenoid alkaloids scaffold biosynthetic pathway, such as ent-copalyl diphosphate synthases, ent-kaurene synthases, kaurene oxidases, cyclases, and key aminotransferases. Furthermore, candidates responsible for decorating of diterpenoid alkaloid skeletons were discovered from transcriptome sequencing of fuzi, such as monooxygenases, methyltransferase, and BAHD acyltransferases. In addition, 645 differentially expressed genes encoding transcription factors potentially related to diterpenoid alkaloids accumulation underground were documented. Subsequent modular domain structure phylogenetics and differential expression analysis led to the identification of BAHD acyltransferases possibly involved in the formation of acetyl and benzoyl esters of diterpenoid alkaloids, associated with the acute toxicity of fuzi. The transcriptome data provide the foundation for future research into the molecular basis for aconitine-type C19 -diterpenoid alkaloids biosynthesis in A. carmichaelii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app