Add like
Add dislike
Add to saved papers

An erythrosin B-based "turn on" fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples.

Because of the serious harm to animals and the environment associated with perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a rapid, sensitive and low-cost method for detecting PFOS and PFOA is of great importance. In this paper, a novel sensing method has been proposed for the highly sensitive detection of PFOS and PFOA in environmental water samples based on the "turn-on" switch of erythrosine B (EB)-hexadecyltrimethylammonium bromide (CTAB) system. In pH 8.55 Britton-Robinson (BR) buffer, EB can react with CTAB by electrostatic attraction, resulting in a strong fluorescence quenching of EB. With a subsequent addition of the CTAB, a red-shift occurred (11 nm), followed by a significant increase in fluorescence at high surfactant concentrations. It was found that PFOS and PFOA can obviously enhance fluorescence intensity of EB-CTAB system. The enhanced fluorescence intensity is proportional to the concentration of PFOS and PFOA in the range of 0.05-10 μM with detection limit of 12.8 nM and 11.8 nM (3σ), respectively. The presented assay has been successfully applied to sensing PFOS and PFOA in real water samples with RSD ≤ 4.3% and 2.9%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app