Add like
Add dislike
Add to saved papers

High Glucose Upregulated Vascular Smooth Muscle Endothelin Subtype B Receptors via Inhibition of Autophagy in Rat Superior Mesenteric Arteries.

Autophagy plays an important role in cardiovascular diseases. High glucose (HG) upregulates endothelin subtype B (ETB ) receptors in vascular smooth muscle cells (VSMCs). However, it is unclear as to whether autophagy is involved in HG-induced upregulation of ETB receptors in VSMCs. The present study was designed to examine the hypothesis that HG upregulates ETB receptors by inhibiting autophagy in VSMCs. We studied HG-treated rat superior mesenteric artery (SMA) without endothelium in the presence and absence of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), rapamycin, or MHY1485 for 24 hr. We measured contractile responses to sarafotoxin 6c (S6c) (an ETB receptor agonist) using a sensitive myograph. Levels of protein expression were determined using Western blotting. HG impaired autophagy and increased the levels of ETB receptor protein expression and ETB receptor-mediated contractile responses to S6c in SMA. However, these effects were reversed by AICAR (an agonist of adenosine monophosphate [AMP]-activated protein kinase [AMPK]) and rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]). However, MHY1485 (an agonist of mTOR) did not upregulate the AICAR-inhibited ETB receptor-mediated contractile responses or ETB receptor protein expression in the presence of HG. These data suggest that HG upregulated ETB receptors by inhibiting autophagy in VSMCs via AMPK and mTOR signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app