Add like
Add dislike
Add to saved papers

The use of MEMRI for monitoring central nervous system activity during intact insect walking.

BACKGROUND: Monitoring neuronal activity in the intact behaving animal is most desired in neuroethological research, yet it is rarely straightforward or even feasible. Here we present the use of manganese enhanced magnetic resonance imaging (MEMRI), a technique allowing monitoring the activity of an animal's nervous system during specific behavioral patterns. Using MEMRI we were able to show activity in different ganglia of the central nervous system of intact locusts during walking.

RESULTS: We injected two groups of locusts with manganese, which serves as a magnetic contrast agent. One group was forced to walk on a treadmill for two hours, while the other was immobilized and served as a control. Subsequently, all animals were scanned in a T1 MRI protocol, and the accumulation of manganese in the neuronal tissues that were active during walking was demonstrated by comparing the scans of the two groups. Two neuronal sites showed significantly higher T1 signal in the walking locusts compared to the immobilized ones: the prothoracic ganglion, which locally controls the front legs, and the subesophageal ganglion, a head ganglion which takes part in initiation and maintenance of walking.

CONCLUSION: MEMRI is a potent, non-invasive technique for monitoring neuronal activity in intact locusts, and arthropods in general. Specifically, it provides a promising way for revealing the role of central and high-order neuronal structures in motor behaviors such as walking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app