Add like
Add dislike
Add to saved papers

Ginkgo Biloba L. Extract Reduces H2O2-Induced Bone Marrow Mesenchymal Stem Cells Cytotoxicity by Regulating Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways and Oxidative Stress.

BACKGROUND The oxidative stress environment of pathological tissue has an adverse effect on the survival of bone marrow mesenchymal stem cells (BMSCs) transplantation. Ginkgo biloba L. extract (EGB) has a potent antioxidant effect. In this research, we assessed the protective effects of EGB and EGB-Containing Serum (EGB CS) on BMSCs against injury induced by hydrogen peroxide (H2O2). MATERIAL AND METHODS BMSCs were pretreated with EGB or EGB CS and treated with H2O2. The cell counting kit-8 (CCK-8) method was utilized to detect cell viability. The DCFH-DA Fluorescent Kit method was used to detect intracellular ROS level. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and (CAT) were determined. The Hoechst staining assay and qRT-PCR assay were utilized to evaluate the effect of EGB on cell apoptosis. Mitogen-activated protein kinases (MAPKs) signaling pathway were detected by western blot analysis. RESULTS Compared to the H2O2 group, the number of apoptotic cells in the EGB and EGB CS pretreated groups significantly decreased. The mRNA expression ratio of Bax/Bcl-2 was also decreased. EGB and EGB CS can reduce the production of ROS in BMSCs exposed to H2O2. SOD, GSH-Px and CAT activities were significantly higher compared with those with H2O2 group. Furthermore, EGB or EGB CS pretreatment decreased the protein levels of p-p38MAPK and p-JNK in BMSCs compared to the H2O2 group. CONCLUSIONS Our findings suggested that EGB and EGB CS have protective effect on BMSCs against oxidative stress injury and increase the survival rate of BMSCs transplantation by regulating p38MAPK and JNK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app