Add like
Add dislike
Add to saved papers

Separation of Protactinium Employing Sulfur-Based Extraction Chromatographic Resins.

Protactinium-230 ( t1/2 = 17.4 d) is the parent isotope of 230 U ( t1/2 = 20.8 d), a radionuclide of interest for targeted alpha therapy (TAT). Column chromatographic methods have been developed to separate no-carrier-added 230 Pa from proton irradiated thorium targets and accompanying fission products. Results reported within demonstrate the use of novel sulfur bearing chromatographic extraction resins for the selective separation of protactinium. The recovery yield of 230 Pa was 93 ± 4% employing a R3 P═S type commercially available resin and 88 ± 4% employing a DGTA (diglycothioamide) containing custom synthesized extraction chromatographic resin. The radiochemical purity of the recovered 230 Pa was measured via high purity germanium γ-ray spectroscopy to be >99.5% with the remaining radioactive contaminant being 95 Nb due to its similar chemistry to protactinium. Measured equilibrium distribution coefficients for protactinium, thorium, uranium, niobium, radium, and actinium on both the R3 P═S type and the DGTA resin in hydrochloric acid media are reported, to the best of our knowledge, for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app