Add like
Add dislike
Add to saved papers

Fission of Polyanionic Metal Clusters.

Size-selected dianionic lead clusters Pb_{n}^{2-}, n=34-56, are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n=48, the fission reaction Pb_{n}^{2-}→Pb_{n-10}^{-}+Pb_{10}^{-} is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb_{10}^{-} and Pb_{n-10}^{-} were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017)IMSPF81387-380610.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb_{21}^{2-}, whereas the smallest size for the direct observation was as high as n=28.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app