Add like
Add dislike
Add to saved papers

Kinetic and thermodynamic studies of chlorinated organic compound degradation by siderite-activated peroxide and persulfate.

The efficacy of two oxidant systems, iron-activated hydrogen peroxide (H2 O2 ) and iron-activated hydrogen peroxide coupled with persulfate (S2 O8 2- ), was investigated for treatment of two chlorinated organic compounds, trichloroethene (TCE) and 1,2-dichloroethane (DCA). Batch tests were conducted at multiple temperatures (10-50 °C) to investigate degradation kinetics and reaction thermodynamics. The influence of an inorganic salt, dihydrogen phosphate ion (H2 PO4 - ), on oxidative degradation was also examined. The degradation of TCE was promoted in both systems, with greater degradation observed for higher temperatures. The inhibition effect of H2 PO4 - on the degradation of TCE increased with increasing temperature for the iron-activated H2 O2 system but decreased for the iron-activated hydrogen peroxide-persulfate system. DCA degradation was limited in the iron-activated hydrogen peroxide system. Conversely, significant DCA degradation (87% in 48 hours at 20 °C) occurred in the iron-activated hydrogen peroxide-persulfate system, indicating the crucial role of sulfate radical (SO4 - ·) from persulfate on the oxidative degradation of DCA. The activation energy values varied from 37.7 to 72.9 kJ/mol, depending on the different reactants. Overall, the binary hydrogen peroxide-persulfate oxidant system exhibited better performance than hydrogen peroxide alone for TCE and DCA degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app