Add like
Add dislike
Add to saved papers

Technical Note: Using dual step wedge and 2D scintillator to achieve highly precise and robust proton range quality assurance.

Medical Physics 2018 July
PURPOSE: The purpose of this study was to develop a fast method for proton range quality assurance (QA) using a dual step wedge and two-dimensional (2D) scintillator and to evaluate the robustness, sensitivity, and long-term reproducibility of this method.

METHODS: An in-house customized dual step wedge and a 2D scintillator were developed to measure proton ranges. Proton beams with homogenous fluence were delivered through wedge, and the images captured by the scintillator were used to calculate the proton ranges by a simple trigonometric method. The range measurements of 97 energies, comprising all clinically available synchrotron energies at our facility (ranges varying from 4 to 32 cm) were repeated ten times in all four gantry rooms for range baseline values. They were then used for evaluating room-to-room range consistencies. The robustness to setup uncertainty was evaluated by measuring ranges with ±2 mm setup deviations in the x, y, and z directions. The long-term reproducibility was evaluated by 1 month of daily range measurements by this method.

RESULTS: Ranges of all 97 energies were measured in less than 10 minutes including setup time. The reproducibility in a single day and daily over 1 month is within 0.1 and 0.15 mm, respectively. The method was very robust to setup uncertainty, with measured range consistencies within 0.15 mm for ±2 mm couch shifts. The method was also sensitive enough for validating range consistencies among gantry rooms and for detecting small range variations.

CONCLUSIONS: The new method of using a dual step wedge and scintillator for proton range QA was efficient, highly reproducible, and robust. This method of proton range QA was highly feasible and appealing from a workflow point of view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app