Add like
Add dislike
Add to saved papers

Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.

Aging 2018 May 11
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app