Add like
Add dislike
Add to saved papers

Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers.

This work reports on a series of thermally-bonded, hybrid and oil-sorbent nonwovens developed from binary and tertiary mixing of cotton, kapok, and three varieties of milkweed fibers (Asclepias Syriaca, Calotropis Procera and Calotropis Gigantea) and polypropylene fibers. The physical and chemical properties of the fibers were investigated to examine their oleophilic character. It was observed that all the fiber surfaces were covered with natural wax. Further, kapok and milkweed fibers were found to have less cell wall thickness and high void ratio. Oil sorption and retention characteristics of these fibers were studied in loose fibrous form as well as in structured assembly form (thermally-bonded nonwovens) using high density oil and diesel oil. The effects of fiber diameter, fiber cross-sectional shape, fiber surface area and porosity on the oil sorption behavior were discussed. An excellent and a selective oil sorption behavior of milkweed fibers (Calotropis Procera and Calotropis Gigantea) blended with cotton and polypropylene fibers were observed. The maximum oil sorption capacity of the developed thermal bonded nonwoven was 40.16 g/g for high density (HD) oil and 23.00 g/g for diesel oil. Further, a high porosity combined with high surface area played a major role in deciding the oil sorption and retention characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app