Add like
Add dislike
Add to saved papers

Molecular characterization of single-chain antibody variable fragments (scFv) specific to Pep27 from Streptococcus pneumoniae.

Pep27 from Streptococcus pneumoniae is reported to initiate pneumococcal autolysis, thereby constituting a major virulence factor. Although a few antisera recognizing Pep27 have been reported, no monoclonal, well-characterized antibody for Pep27 has been developed. Here we screened two single-chain antibody variable fragments (scFv) using a phage display from a large human synthetic scFv library to select clones E2 and F9. Dissociation constants (Kd ) of E2 and F9 were 1.1 μM and 0.50 μM, respectively. E2 and F9 did not cross-react with other pneumococcal and unrelated proteins. The epitopes of Pep27 were localized to residues 24, 26 and 27 by alanine scanning. Molecular docking analysis supported the experimentally investigated epitope. The E2 and F9 clones specifically detected Pep27 in an environment mimicking in vivo conditions, demonstrated in human serum. The scFv clones characterized here represent molecular tools for the detection of pneumococcal diseases with potential for further improvement in affinity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app