Add like
Add dislike
Add to saved papers

Consistency of normalized cerebral blood volume values in glioblastoma using different leakage correction algorithms on dynamic susceptibility contrast magnetic resonance imaging data without and with preload.

BACKGROUND AND PURPOSE: Several leakage correction algorithms for dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI)-based cerebral blood volume (CBV) measurement have been proposed, and combination with a preload of contrast agent is generally recommended. A single bolus application scheme would largely simplify and facilitate standardized clinical applications, while reducing contrast agent (CA) dose. The aim of this study was, therefore, to investigate whether appropriate leakage correction redundantizes prebolus application by comparing normalized DSC-based CBV (nCBV) measures of two consecutive CA boli.

MATERIALS AND METHODS: Twenty-seven patients with suspected glioblastoma (WHO-grade-IV) underwent DSC-MRI during two consecutive boli of Gd-based CA. Four variants of two post-processing leakage correction techniques were compared with respect to nCBV in contrast enhancing tumor tissue. First, a reference curve approach with first pass and full integration of corrected ΔR2*(t), and second, a deconvolution-based approach using singular value decomposition (SVD) with a standard noise-dependent cutoff or Tikhonov regularization.

RESULTS: Compared to respective uncorrected values, all leakage correction techniques increased nCBV for data acquired without prebolus, while there was no consistent trend for data acquired with prebolus. The best agreement between corrected nCBV values in contrast enhancing tumor, obtained in the same patients without and with prebolus, respectively, was obtained for the reference curve-based correction approach with either first pass or full integration.

CONCLUSION: The reference curve-based leakage correction approach with integration-based nCBV calculation yielded a high accordance between nCBV values without and with prebolus, respectively. Thus, it appears possible to obtain valid nCBV in glioblastoma with a single CA injection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app